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Abstract. We investigate the possibility of applying an external constant magnetic field to 
a quantum mechanical system consisting o f a  panicle moving on a compact or non-compact 
two-dimensional manifold of  constant negative Gaussian curvature and of finite volume. 
For the motion on compact Riemann surfaces we find that a consistent formulation is only 
passible if the magnetic flux is quantized, as it is proportional to the (integrated) first 
Chern class ofa cenain complex line bundle over the manifold. In the case of non-compact 
surfacer of finite volume we obfain the striking result that the magnetic flux has to vanish 
identically due to the theorem that a n y  holomorphic line bundle over a non-compact 
Riemann surface is halomorphically trivial. 

1. Introduction 

The free motion of a particle on two-dimensional surfaces has recently attracted some 
attention [l-31, as the classical dynamics of such systems is chaotic whenever the 
surface is endowed with a metric of negative curvature. The case of a compact surface 
of genus two turns out to be one of the simplest examples of a chaotic Hamiltonian 
system. Its quantum mechanical version (the Hadamard-Gutzwiller model) leads to 
the eigenvalue problem for the corresponding Laplace-Beltrami operator. This is a 
nice example to study the quantum mechanical properties of a classically chaotic 
system. Non-compact surfaces, that may have cusps and thus extend to infinity, can 
be used to investigate chaotic scattering processes [Z]. 

It  is tempting to ask what happens when the motion of the particle is no longer 
free but takes place in an external electromagnetic field. The simplest case will be a 
constant magnetic field. If the surface is a plane, there are bound states formed, the 
so-called Landau levels, under the influence of a magnetic field. A similar phenomenon 
also takes place on the surfaces considered here. Our main purpose in this paper is 
to find out what restrictions on the value of the magnetic field are imposed and thus 
what models can be consistently defined. We will see that in certain cases the magnetic 
flux is quantized, whereas in other cases there is no constant magnetic field allowed 
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at all. With our discussion we want to clarify some problems that occurred in recent 
studies of scattering systems under the intluence of magnetic fields. 

The organization of this paper is as follows. First we review the treatment of 
electromagnetic fields on arbitrary manifolds and define what we call a constant 
magnetic field. Then we present the models we want to discuss, namely those that are 
interesting for a study of the quantum mechanical behaviour of a classically chaotic 
system and allow an application of Selberg's trace formula, which serves as an exact 
periodic-orbit formula. For these mode!: we determine the a!!o-ed vs!iiis fo: the 
constant magnetic field. In  the final section we comment on a recent proposal to define 
chaotic scattering systems in constant magnetic fields. 

J Bolre and F Steiner 

2. Electrodynamics on general manifolds 

If one wants to discuss electrodynamics on a topologically non-trivial smooth configur- 
ation manifold M ,  one has to treat the global properties of the fields and state vectors 
very carefully. The field strength F and the vector potential A have to be considered 
as curvature and connection forms of a principal U(  1)-bundle on M. In general it  is 
not possible to define a vector potential A as a global one-form, a fact that is well 
known, e.g. from the trea!ment of Dirac's. n x ~ o p a l e  o: the bha:ono:.-Boh~ effec:. 

In this paper we discuss a special case. M will be a two-dimensional surface 
endowed with a Riemannian metric of constant negative curvature and of finite volume. 
F will represent a constant magnetic field, a notion to be defined properly later. 

In quantum mechanics one generally describes electromagnetism in terms of prin- 
cipal U(l)-bundles P over A4 (see e.g. [4]). The field strength F is a two-form on M 
! h a  is c!osed dce !o o x  ha!f of Maxwe!!'~ en,ua!lonn, dF = 0, 2nd thus defines 2 

DeRham cohomology class in H 2 ( M , R ) .  If, in addition, F is exact, there exists a 
globally defined vector potential A, F = dA. Besides these zero-cohomological field 
strengths it is also possible to define an electromagnetic theory if only F represents 
an integral cohomology class, [ F ]  E H * ( M ,  Z). This fact is due to the following theorem 
(see e.g. [SI). 

Theorem. Let w be a two-form on M. Iff [ ( 1 / 2 ~ i ) w ] ~  H 2 ( M , Z ) ,  then there exists a 
complex line bundle L over M with connection V, such that w is  the curvature form 
associated with V. 

Under these conditions the state vectors # of the system are sections in L and 
F=(:; ie;w is th i  field stizngth. The coiiiiiction B in !oca! coo:dina:e: { x y h l )  !oak: 
like VF'=a:''+ieAF', where AIh' is the local vector potential i n  a given gauge. The 
stationary Schrodinger equation to be solved is then 

-V'# = E @  ( 1 )  

The magnetic tlux Q, through M reads 
P , 

@ = e  J ,  F = - i  J w = Z T c ( L ) € 2 T z  
M 

where c (  L )  is the (integrated) first Chern class of the line bundle L, which is an integer 
number. 
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To define what we want to call a constant magnetic field o n  a two-dimensional 
manifold we first review the case of a constant magnetic field on a surface S that is 
embedded in R'. There the magnetic field is just a vector B in R'. S carries a metric 
induced from the Euclidean metric in R', g,,:=ax/du'. ax/au",  where S is given by 
the parametrization x ( u ' ,  U'). The embedding in R' now defines an orientation of S, 
given by the outward normal vector field N := a,x A a,x/lJ,x A &xl. Therefore one can 
define an 'oriented volume form' df:= N f i  du '  A du'= N d(vol). -. 

I ne magnetic iiux of B through S thus is 

B .  d f =  IS/ J cos 0 d(vol) 
S 

(3) 

where 0 is the angle between B and N. 
When there is no embedding of the manifold M in some higher-dimensional 

manifold (like W') there is no orientation of M. Thus the most natural way to define 
a constant magnetic field seems t o  be the following one  (in local coordinates). When 
a Riemannian metric d s2=g , ,Ydx+OdxY is given, then there exists the volume form 
d(vo1) =& d x '  ndx2 ,  g : =  det(g,..). Then put F : =  B d(vol), B E  W is the magnitude of 
the magnetic field. For a manifold of finite volume V the flux through M is 

= e r = 2B r d(vG!) = eB". (4) 
JM J M  

As Q, = 27rc(L), see equation (2), one  obtains a quantization of the flux and the value 
of the  magnetic field, respectively, 

3. The models 

We consider Riemann surfaces that can be  uniformized in the Poincare upper half-plane 
Yf={z=x+iy ly>O}  with metric d s ' = y - ' ( d x O d x f d y O d y )  of constant negative 
Gaussian curvature K = -1. Among these are all compact Riemann surfaces of genus 
g a 2 and some non-compact surfaces, as  e.g. the fundamental domain of the modular 
group PSL(2, a), and the respective fundamental domains of the subgroups of the 
modular group. One of these is the so-called leaky torus [2], which is a surface of 
genus one with one cusp. The study of the quantum mechanical motion of a particle 
on such surfaces has been initiated by Gutzwiller [ I ,  21 and was continued by others 
i3, 6j. 

In general all these surfaces can be represented as a fundamental domain in 2 of 
a discrete subgroup r of PSL(2, W) (called a Fuchsian group). Any element Y E T  can 
be represented by a 2 x 2 matrix 

where A and -I have to be identified as PSL(2,R)=SL(2,W)/ 
(*U). r operates on Yt via fractional linear transformations, 

a z + b  
y z = -  

cz + d (7) 
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Then r\X is a Riemann surface. Any compact Riemann surface of genus g 3 2 can 
be realized in this way due to the uniformization theorem, with r consisting only of 
hyperbolic transformations, that is la + dl > 2. Other examples of Fuchsian groups are, 
as mentioned above, the modular group and its subgroups, especially the congruence 
subgroups (see e.g. [7]). They yield Riemann surfaces r\% with cusps and of various 
genera. Thus we have a large variety of different interesting models at hand. 

In the case of free particles the state vectors are (smooth) functions on M =r\%. 
Equivalently one can take r-automorphic functions on 2, that is $: Z- @, +( yz) = J / (  z )  
for all y e  r. When a constant magnetic field is present the state vectors are sections 
in an appropriate bundle, as discussed in the previous section. They can also be 
represented as functions on  Z, although not r-automorphic ones of course. The 
behaviour of such a function $: Be+ @ under a transformation z u y z ,  y E r, has been 
derived in [8]. There the authors choose the gauge A = A ,  dx + A, dy, A ,  = - B / y ,  
A ,  = 0. Then they show that the state vector, viewed as a function on X, transforms like 

J Bolre and F Steiner 

$(yz)=$(z)exp{i2eBarg(cz+d)}= 

From this transformation rule it  seems to be obvious that + defines a section in some 
line bundle over M and not a function on M, but this has to be checked of course, 
since the bundle may be trival. This bundle can be related to the canonical bundle 
K = T&,M of holomorphic one-forms on M. A holomorphic function f :  2+@, that 
obeys the transformation rule (8), can be associated with a section in K”,  A = eB, in 
the following way. Form g(z) := y-‘ f(z), then 

g(yz) = ( C Z + d ) * * g ( z )  vyEr.  (9) 

This defines a global section in K A ,  since d(yz)/dz = ( c z + d ) - ’ ,  therefore 
g(  yz )  d( yz)^  = g( z )  dz“. f itself defines a section in K K-”*.  Functions of the 
same type as g, i.e. that satisfy (91, are called r-automorphic forms of weight 2A. (For 
the connection between automorphic forms and line bundles in general see [9].) 

As a result we get that the state vector of a particle in a constant magnetic field 
defines a section in the bundle K”,  A = eB. As only for A ~ f h  such powers (in the sense 
of tensor products) of line bundles exist, this gives a quantization condition for the 
value of the magnetic field, 

(10) 
1 

2e 
B = - n  n E h. 

This condition is necessary, but not yet sufficient. 
For a compact surface of genus g a 2  the Gauss-Bonnet theorem yields V =  

4 v ( g -  1)  for the volume of M. Therefore (1/2vi)w, o = i e F =  ieB d(vol), is of integral 
cohomology class, 

The theorem quoted in section 2 then guarantees the existence of the appropriate line 
bundle. I t  is, of course, just L = K””. Thus for any value of B = n / 2 e ,  n E Z, there 
exists the corresponding physical system, therefore (IO) is also a sufficient condition 
in the case of compact surfaces, and since the expression (11) equals c ( L )  (see (2)),  
i t  is obvious that the respective bundles are non-trivial as long as B # 0. 
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Now we consider the case of non-compact surfaces (but of finite volume). There 
is the following theorem (see e.g. [IO]). 

Theorem. Any holomorphic line bundle over a non-compact Riemann surface is 
holomorphically trivial. 

A trivial line bundle L, however, has a vanishing first Chern-class, c ( L )  = 0. Since 
( 5 )  says that B is proportional to c ( L ) ,  B also has to vanish, as V is finite. The 
conclusion thus is that it is impossible to apply a constant magnetic field, in the sense 
of section 2, to a particle moving on a non-compact Riemann surface of finite volume 
which has a uniformization in the Poincare upper half-plane. 

The Hamiltonian of the magnetic systems considered here (see (1)  and [ l l ] )  is 

H B  = -y2(J:+ J:)-i2eEyJ, + e 2 B 2 .  (12) 

The operators D2& = -y2(J:+Jt)+2iAyJ,, acting on functions on %satisfying (81, are 
well known in the mathematical literature (see e.g. [ IZ]) .  There is a Selberg trace 
formula for these operators (see e.g. [13]). This relates the eigenvalues of D,, to the 
length spectrum of closed geodesics on r\%. Let pk = + + p i  denote the eigenvalues of 
D,,, then for compact Riemann surfaces with genus greater than one 

m v +- sinh (27rp) +-z z .  
n = ,  ' '('")=- 47r 1 _m d p p h ( p ) c o s h ( 2 7 r p ) + c o s ( 2 d )  2(,,,, x = l  sinh(kl(y)/Z) 

x is a multiplier system for the double cover f of r, l- = ?/(*U}, and h( p )  is any even 
function that is holomorphic in the strip IIm pi s i +  e, E > 0, and decreases faster than 
/ P I - *  at infinity. g ( x ) = j t z ( d p / 2 7 r ) h ( p )  einr is the Fourier transform of h ( p ) ;  { Y ) ~  
denotes all primitive conjugacy classes in r and I (  y) is the length of the closed geodesic 
that corresponds to {y},,. The last term on the R H S  of (13) represents a sum over the 
additional eigenvalues of D,, for AZO, which can be viewed as Landau levels [ l l ] ,  
when one considers the Hamiltonian (12). These eigenvalues are [12, 131 

(IA1 - m ) ( l + m  - / A i )  O S  m < I , - &  (14) 

The trace formula (13) enables one to compute the eigenvalues of D,, and thus 
those of H B  = D-,, + e 2 B 2 ,  once one knows the geodesic length spectrum { I (  y) 1 y E r} 
of M. Such a procedure can be applied to compute the energy-levels of a general 
chaotic Hamiltonian system in a semiclassical approximation and is known as 
Gutzwiller's periodic-orbit quantization [ 141. Whenever one has a system where one 
can apply a Selberg trace formula, this periodic-orbit quantization becomes exact, i.e. 
i t  is not only valid as a semiclassical approximation. In the case B = 0 and for genus 
two (Hadamard-Gutzwiller model) this method has proved useful to compute low-lying 
energies [3]. There one takes a function h ( p )  that exhibits sharp peaks at the pI, e.g. 
a Gaussian smearing 

1 p-p',2, '-  + -1 p + P ' , : / r :  h( p )  = e- e 

Thus also these magnetic systems may be quantized using the trace formula 
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4. Discussion 

The surfaces discussed in section 3 that have cusps, i.e. where r contains parabolic 
transformations, extend to infinity (im is a fixed point of the parabolic transformations). 
Therefore the phase shift in the wavefunction of a particle coming from io0 and being 
reflected back to infinity can be related to the scattering matrix S ( k ) ,  where k is the 
particle’s momentum, E = Gutzwiller [2] discussed the S-matrix for the leaky 
torus and draw attention to the fact that the irregular behaviour of the phase shift, 
which is governed by the Riemann zeta function, is a clear signature of quantum chaos. 
Recently [6] the poles of the S-matrix which are given by the non-trivial zeros of the 
Riemann zeta function have been interpreted as resonances. (These poles lie in the 
unphysical sheet of the complex energy-plane, since the momenta have a negative 
imaginary part). Numerically this interpretation has been shown to be nicely consistent 
[6]. 

It is interesting to investigate the potential influence of a constant magnetic field 
on these scattering systems. In [8] it was claimed that the  S-matrix gets modified by 
a factor that exhibits poles at the momenta associated with the Landau levels, i.e. those 
discrete eigenvalues of the Hamiltonian that are due to the presence of the magnetic 
field. 

However, our result derived in section 3 implies that it is impossible to apply a 
constant magnetic field to  non-compact Riemann surfaces of finite volume. Thus for 
the modular domain and the leaky torus there is no consistent formulation with a 
constant magnetic field, even if the magnetic field is quantized, contrary to the statement 
made in ref. [SI. 

Nevertheless these systems may be studied from a mathematical point of view. 
Although the line bundles in which the automorphic forms define sections are trivial, 
there may very well exist non-trivial automorphic forms. It is only that the triviality 
cannot be seen directly by inspecting the automorphic forms. The scattering states that 
were proposed in [8] are thus mathematically well-defined objects, they may be called 
’generalized Eisenstein series’ and are well known in the mathematical literature (see 
e.g. [12, 131). There exists also a Selberg trace formula for these systems [13]. But the 
physical interpretation of these systems as chaotic scattering models in an external 
magnetic fieid is not consistent. 

J Bolte and F Sfeiner 
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